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Abstract. A random pseudofractal network (RPN) is generated by a recursive growing rule. The RPN is
of the scale-free feature and small-world effect. We obtain the theoretical results of power-law exponent
γ = 3, clustering coefficient C = 3π2 − 19 ≈ 0.74, and a proof that the mean distance increases no faster
than ln N , where N is the network size. These results agree with the numerical simulation very well. In
particular, we explain the property of growth and preferential attachment in RPNs. And the properties of
a class of general RPNs are discussed in the end.

PACS. 89.75.Hc Networks and genealogical trees – 05.10.-a Computational methods in statistical physics
and nonlinear dynamics

1 Introduction

Many social, biological, and communication systems can
be described as complex networks with numerous nodes
(even can be subsystems) and edges between them [1–7].
Complex networks have attracted much attention across
various fields of science and engineering, and researchers
have been making their efforts to uncover more generic
properties of complex networks. In these endeavors, the
small-world effect [8–10] and the scale-free feature [11,12]
are two significant discoveries of various complex net-
works.

The small-world networks are intermediate of the lo-
cal regular networks and the fully random networks, such
small-world networks are usually characterized by two fea-
tures: a large clustering coefficient, which is a characteris-
tic of regular networks, and a small mean distance, which
is typically observed in random networks. In 1998, Watts
and Strogatz first introduced a small-world network (WS
model) [8], which can be constructed by starting with one-
dimensional lattice and randomly rewiring each edge with
some probability. Another popular model was proposed
by Monasson [9] and by Newman and Watts (NW model)
[10] independently. In this model, an edge is added with
some probability between each pair nodes without break-
ing any original clusters. Subsequently, many other models
have been suggested and improved [13–17].

The Erdös and Rényi random graph (ER model) [18]
and the small-world model have the same feature that
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the degree distribution peaks at a mean value and de-
cays exponentially. Yet, many networks in reality, such as
the Internet, World Wide Web, social networks, metabolic
networks and many others, are of the scale-free fea-
ture, namely, their degree distribution obeys a power-
law. The Barabási and Albert’s scale-free network model
(BA model) [11,12] suggests that growth and preferen-
tial attachment are the two main ingredients of self-
organization of a network. The subsequent researchers
have focused on the statistical mechanics such as accel-
erating growth [19], nonlinear attachment [20,21] etc, and
on various processes, such as percolation [22,23], cascade
processes [24,25] etc.

In fact, the scale-free feature and high clustering are
not exclusive for a large number of real networks. Yet, the
above models have difficulty capturing these two charac-
teristics simultaneously. For example, in BA model, the
mean clustering coefficient is small and decreases with
the increasing of network by numerical simulation [1]. Re-
cently, a few authors have demonstrated the use of pure
mathematical objects and methods to construct some de-
terministic graphs, a basic mechanics is recursive opera-
tion on graph topology. One is hierarchical organization
by generating four replicas repeatedly [26–28], a second
is pseudofractal obtained by attachment aiming at each
edge [29], a third popular one is Apollonian networks [30],
where a certain number of nodes will be added and con-
nected to their three nodes at each step. Yet, these models
are all regular graphs in a certain sense without statistical
mechanics for consideration. A significant endeavor is the
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Fig. 1. Evolution of pseudofractal graph. The growth starts
from a single edge with two nodes. At each time step, every
edge generates an additional node, which is attached to both
end nodes of the edge.

random Apollonian networks (RANs) introduced by Zhou
etc. [31].

In this paper, we consider a simple rule that generates
scale-free networks with high clustering and small mean
distance. This network can be called random pseudofrac-
tal networks (RPN), which is a variation of pseudofractal
graph. In fact, RPN was first proposed by Dorogovsev
etc. [32] under the circumstance of self-organization of
networks into scale-free features. Our paper focuses on
the characteristics of this model. The rest of this paper is
organized as follow: in Section 2, the RPN is introduced
in detail. In Section 3, we give both theoretical results
and numerical simulation of RPN based on rate equation
modelling, including the scale-free feature and the small-
world effect. In Section 4, some discussions including the
homogeneous and different characteristics are given be-
tween RPN and BA model. At last, we extend a class
of general RPNs by the similar recursive rule and simply
discuss their properties.

2 Random pseudofractal networks

Pseudofractal graph. The growth starts from a single edge
with two nodes at t = −1 (shown in Fig. 1). At each time
step, a new node with two edges is added to every node
existing of the graph, where the new edges are attached
to both ends of the corresponding edge. Thus, this simple
rule produces a growing network, where the total number
of nodes at time t is Nt = 3(3t + 1)/2, and the total
number of edges is Lt = 3t+1, so that the average degree
is kt = 2Lt/Nt = 4/(1 + 3−t).

RPN (shown in Fig. 2) makes a statistical mechanics
in the Pseudofractal graph. Namely, at each time step, a
new node, which is attached to both the end nodes of the
edge, is added to an existing edge randomly chosen. Using
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Fig. 2. Evolution of random pseudofractal graph. At the first
time step t = 1, the fourth node is added to the network and
randomly selected an edge labelled as l12 and connected to
nodes 1 and 2. Then at time step 2, the edge l13 is selected
and two edges l14, l34 are added at the same time. With this
rule, one can get a random pseduofractal network. Note that
other edges such as l12 may be selected at the time step t = 4,
which is different from pseduofractal network.

this rule, one can get the random pseduofractal networks.
It is clear that the total number of nodes at time t is
Nt = t + 2, and the total number of edges is Lt = 2t + 1.
Note that the minimum degree is 2.

3 Statistical characteristics of RPN

Degree distribution. In RPN model, the mean probability
at time t that a node has the randomly chosen edge at-
tached to it is equal to the degree k of the node divided
by the total number of edges, Lt = 2t + 1. Therefore,
let n(k, t) be the number of nodes with degree k when
t nodes are present, then we can immediately get a rate
equation [20]:

n(k + 1, t + 1) =
k

Lt
n(k, t) +

(
1 − k + 1

Lt

)
n(k + 1, t) (1)

n(k, t) can be approximated as tp(k), where p(k) is the the
probability density function of degree distribution. Then
the above equation can be rewritten as

(t+1)p(k+1) =
kt

2t + 1
p(k)+

(
1 − k + 1

2t + 1

)
tp(k+1) (2)

furthermore, we have the recursive expression when t is
sufficient large,

p(k + 1) =
k

k + 3
p(k). (3)

Obviously, the probability density function is of the form:

p(k + 1) =
24

k(k + 1)(k + 2)
p(2). (4)
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Fig. 3. (Color) Degree distribution of random pseudofractal
networks , with N = 1000 000 (green), N = 320 000 (red),
N = 100 000 (blue). In this figure, P (k) denotes the number of
nodes of degree k, the dashed line (black) is the reference value
by translation of theoretical results and the curves (blue) is the
theoretical results. In particular, the number of the minimal
degree has a departure from the power-law, which be easily
explained by the density function obtained theoretically.

It is clear that equation (4) satisfies the normalization
equation:

kmax∑
i=kmin

p(i) = 1 (5)

and kmin � kmax, then p(2) = 1
2 . And the solution of the

equation (1) is

p(k + 1) =
12

k(k + 1)(k + 2)
. (6)

This solution is the same as in reference [19]. When k
is sufficiently big, the degree distribution satisfies p(k) ∝
k−γ with γ = 3. In Figure 3, we show that the degree dis-
tribution for t = 100 000, 320 000, 1 000 000, respectively.
The simulation results agree well with the theoretical ones.

Clustering coefficient. In general, clustering coefficient
Ci of a node i is of such form:

Ci =
2ei

ki(ki − 1)
(7)

where ki is the degree of the node i, and ei is the number
of edges among node i’s neighbor-set. The clustering coef-
ficient C of the whole network is the mean of all individual
Ci’s, i.e.,

C =
1
N

N∑
i=1

Ci (8)

where N is the total number of node of the whole network.
In RPN, when node i is added to the network, it is of

degree 2 and ei = 1. If the degree of node i increases by 1
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Fig. 4. (Color) Clustering coefficient of random pseudofractal
networks, with m = 1 (green), m = 2 (red), m = 3 (blue). In
this figure, one can find that the clustering coefficient of RPN
is almost a constant, which agrees with the analytic results
(dashed line). Furthermore, the clustering coefficients of m-
RPNs increase as m increases.

at some time, ei will increase by 1 at the same time. Thus,
we can write down the expression of ei in term of k(i):

e(i) = k(i) − 1. (9)

Substituting equation (9) into equations (7, 8), we easily
derive that

C =
2

t + 2

t+2∑
i=1

1
k(i)

. (10)

In order to calculate the expression above, we make use
of the results obtained above, namely, p(k) = 12/[k(k +
1)(k + 2)], thus,

C = 24
kmax∑

k=kmin

1
k2(k + 1)(k + 2)

(11)

where kmax � kmin = 2, then, C = 2π2 − 19 ≈ 0.739.
Obviously, the clustering coefficient of RPN is constant
and very big after a long evolution. Figure 4 reports the
simulation results about the clustering coefficient of RPN,
which agrees very well with the analytic one.

Mean distance. In small-world effect, most pairs of
edges in many networks seem to be connected by a short
path through the network, so that the mean distance can
be an important parameter that measures a network to be
or not be of a small-world effect.

Consider an undirected network with N nodes, let us
define L(N) to be the mean distance between nodes pairs
in a network:

L(N) =
2

N(N + 1)

∑
i≤j

di,j (12)

where σ(N) =
∑

i≤j di,j is the total distance of a network
with N nodes, and di,j denotes the distance between i
and j.
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According to the routine relation, the addition of a new
nodes will not affect the distance between those already
existing, then in our RPN at time t,

σ(t + 3) = σ(t + 2) +
t+2∑
i=1

di,t+3. (13)

Assume that the node t + 3 is added to the edge labelled
as lmn, where m and n are the labelled numbers of nodes
shown in Figure 2. Note that the new node added at time
t is labelled as t+2 since there are two initial nodes. Then,

t+2∑
i=1

di,t+3 = t + 2 +
∑
i∈Γ

Di,x (14)

where Di,x = min{di,m, di,n}, and Γ = {1, 2, · · · , t + 2}−
{m, n} is a node set with cardinality t. The sum

∑
i∈Γ Di,x

can be considered as the total distance from one node x
to all the other nodes in RPN with t nodes, which can be
approximated in terms of L(t + 1):

∑
i∈Γ

Di,x = tL(t + 1). (15)

Note that the mean distance L(t) increases monotonously
with t, then

tL(t + 1) =
2σ(t + 1)

t + 1
<

2σ(t + 2)
t + 2

. (16)

Combining equations (12–14), we have

σ(t + 1) < σ(t) + t +
2σ(t)

t
. (17)

Now consider the equation obtained from equation (17)

dσ(t)
dt

=
2σ(t)

t
+ t. (18)

The solution is σ(t) = t2(ln t + c), where c is a constant.
Thus, we have L(t) ∼ ln t. Note that expression (17) is an
inequality, then L(t) increases at most as ln t with t. We
show the simulation in Figure 5, which agrees well with
the theoretical results.

4 Discussion and summary

The power-law exponent of RPN, γ = 3, is the same as
the BA mdoel’s. Moreover, the evolving mechanism is also
similar to the BA’s, and we can adopt continuous model to
explain the growth of RPN. For simplicity, there are two
nodes s = 1, 2, and each with degree 1 initially (t = 2),
thus each node is labelled by the time of its birth, 0 < s ≤
t. Let k(s, t) be the mean degree of the node s at time t,
then the continuous approximation [12,33] is of the form
p(k, s, t) = δ(k − k(s, t)), consequently,

∂k(s, t)
∂t

=
k(s, t)

Lt
. (19)
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Fig. 5. (Color) The dependence between the mean distance L
and ln t of random pseudofractal networks, with m = 1 (green),
m = 2 (red), m = 3 (blue). In this figure, the dependence
between L and ln t is almost a line, which accords with the
analytic results. For m-RPNs, the slopes of corresponding lines
increase as m increases.

Furthermore, equation (19) can be rewritten as

∂k(s, t)
∂t

= 2
k(s, t)∫ t

0
k(u, t)du

(20)

where
∫ t

0
k(u, t)du = 2Lt is the degree of the total net-

work at time t. And the number 2 on the right of equa-
tion (20) means the two added edges at each time step.
Therefore, equation (20) consists of two ingredients of BA
model: growth (at each time step, a new node is added
to the network) and preferential attachment (the prob-
ability Π that a new node will be connected to node
s depends on the average degree k(s, t) of node s, such
that Π = k(s, t)/

∫ t

0 k(u, t)du at time t). Though the true
meaning of equations (19) and (20) are different, the two
mathematical expressions are the same. We can study the
RPN’s evolution from the point of view of the BA’s.

On the other hand, the mean clustering coefficient of
BA depends on the network size as C(N) ∼ N−0.75 [1],
which is much smaller than the RPN’s. The degree distri-
bution of a growing network may mainly determined by
the two ingredients as reported in BA model, but the other
significant properties such as the clustering coefficients,
topology structures, are likely to be of great distinguish.

In fact, a general construction of RPNs can be intro-
duced by the similar rule. This model can be described
as: there is an edge with two nodes initially. At each time
step, m nodes orderly connected by m + 1 edges are at-
tached to both ends of the corresponding edge randomly
chosen. With this rule, a class of general RPN networks
(m-RPN) will be produced, where the total number of
nodes at time t is Nt,m = mt + 2, the total number of
edges is Lt,m = (m + 1)t + 1, and the mean degree is
kt,m ≈ 2(m + 1)/m as t is sufficient large. In particu-
lar, m = 1, the network will degenerate the RPN. Let
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n(k, t, m) be the number of nodes with degree k at the
time t when m nodes are added at each time step, then

n(k + 1, t + 1, m) =
k

Lt,m
n(k, t, m)

+
(

1 − k + 1
Lt,m

)
n(k + 1, t, m) + mδk2. (21)

The solution of equation (21) is given by following formula:

p(k, m) =
(m + 1)(m + 2)!(k − 1)!

(k + m + 1)!
. (22)

When k is big enough, the degree distribution satisfies
p(k) ∝ k−γ with γ = m + 2. A numerical simulation for
m = 1, 2, 3 is shown in Figure 6, which accords with the
analytic results. The definition of clustering coefficients
in equation (10) for m-RPNs (m ≥ 2) does not hold any
more, we define a clustering coefficient of order x as the
probability that there is a distance of length x between
two neighbors of a node i [34]. Putting the number of
such x-distance equal to ei(x), the higher order clustering
coefficient follows:

C(x) =
1
N

N∑
i=1

Ci(x) =
1
N

N∑
i=1

2ei(x)
ki(ki − 1)

. (23)

And we are interested in the shortest distance among two
neighbors for general RPNs, namely, C(m). According to
the growing way of general RPNs, it is easily derived that

ei(m) = ki − 1. (24)

Obviously, C(m) is determined by m such that

C(m) =
m∑

j=0

(( j∑
i=0

αi

) 1
2 + j

)
+ 1.29(m2 + 3m + 2) (25)

where αi, (i = 0, 1, 2, · · · , m) is the corresponding residue
of function Ci(m) such that

(k − 1)!
k(k + m + 1)!

=
m∑

i=0

αi

k + i
+

β

k2
. (26)

The numerical simulation is reported in Figure 4. In this
figure, the clustering coefficients of the whole network are
constant, which agree well with the analytic results, and
increase as m increases for each m. The laws of mean dis-
tance of the m-RPN L(t, m) are almost the same as the
1-RPN, i.e., L(t, m) ∝ ln t shown in Figure 5 by simula-
tion.

According to the analyses and simulation, the m-
RPNs, which are constructed by a simple recursive rule,
are not only scale-free, but also small-world. In particular,
statistical mechanism is introduced in the growth process
of m-RPN. Moreover, the m-RPN’s growth is similar to
the BA’s, but there is a quite different clustering coeffi-
cient, which leads to a small-world effect for RPN. Since
many real networks are both scale-free and small-world,
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Fig. 6. (Color) Degree distribution of m-RPNs, with m = 1
(green), m = 2 (red), m = 3 (blue) and N = 640 000. In
this figure, P (k) denotes the number of nodes of degree k,
the dashed line (black) is the reference value by translation
of theoretical results and the curves (blue) is the theoretical
results. In particular, the number of the minimal degree has a
departure from the power-law, which can be easily explained
by the density function obtained theoretically.

this class (including RAN, m-RPN and hierarchical orga-
nization etc.) may perform perfectly in description of real
networks properties.

This work is supported by the Chinese National Natural Sci-
ence Foundation under grant 60304018.
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18. P. Erdös, A. Rényi, Publ. Math. 6, 290 (1959)
19. S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 63, 025101

(2001)
20. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett.

85, 4629 (2000)
21. P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 066123 (2001)
22. R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378

(2000)
23. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Eur.

Phys. J. B 38, 177 (2004)
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